

Product: 7731DNH ☑

7731DNH - 75 Ohm SDI Coax, RG-11, 14 AWG Solid BC, Trishield, LSZH-C

Jkt

Product Description

75 Ohm SDI Coax, RG-11, 14 AWG Solid Bare Copper Conductor, PE Insulation, Foil + 80% Tinned Copper Braid + Foil Shield, LSZH Jacket, Dca. IEC 60332-3-24.

Technical Specifications

Product Overview

Suitable Applications:	Digital Video, 6 Gb/s UHDTV, HD-SDI 1080p; The outer conductor is designed for high screening attenuation and low transfer impedance; The cable is UV-resistant and suitable for indoor and outdoor use
------------------------	---

Construction Details

Conductor

Number of Element	Size	Stranding	Nom. Diameter	Material
1	14 AWG	Solid	1.63 mm	BC - Bare Copper

Insulation

Ele	nent	Material	Nom. Insulation Diameter
Insulated	Conductor	PE - Polyethylene (Foam)	7.11 mm (0.280 in)

Outer Shield

Layer	Outer Shield Type	Material	Coverage
1	Tape	Tri-Laminate (Alum+Poly+Alum)	100%
2	Braid	Tinned Copper (TC)	80%
3			

Outer Jacket

Material	Nom. Diameter
LSZH - Low Smoke Zero Halogen (Flame Retardant)	10.2 mm

Electrical Characteristics

Return Loss (RL)

Frequency	Min. Return Loss
5 - 850 MHz	23 dB
850 - 3000 MHz	21 dB

Attenuation

Frequency	Nom. Attenuation
1 MHz	0.5 dB/100m
10 MHz	1.5 dB/100m
71.5 MHz	3.6 dB/100m
135 MHz	4.8 dB/100m
270 MHz	6.9 dB/100m
360 MHz	8 dB/100m
540 MHz	10 dB/100m

720 MHz	11.7 dB/100m
750 MHz	12 dB/100m
1000 MHz	14.1 dB/100m
1500 MHz	18 dB/100m
2250 MHz	22.6 dB/100m
3000 MHz	26.9 dB/100m
4500 MHz	34.1 dB/100m

Electricals

Max. Conductor DCR	Nom. Capacitance Cond-to-Shield	Nom. Characteristic Impedance	Nom. Velocity of Prop.
8.2 Ohm/km (2.5 Ohm/1000ft)	53 pF/m (16 pF/ft)	75 Ohm	84%

Transfer Impedance

Max. Transfer Impedance

Max. 2.5 mOhm/m

Screening

Frequency	Min. Screening Attenuation
30 - 1000 MHz	95 dB
1000 - 2000 MHz	85 dB
2000 - 3000 MHz	75 dB
3000 - 4500 MHz	65 dB

Screening Class: A

Mechanical Characteristics

Temperature

Operating	Installation	Storage
-30°C To +70°C	-5°C To +50°C	-30°C To +70°C

Bend Radius

Stationary Min. 100 mm (3.9 in)

Max. Pull Tension: 650 N (150 lbf)

Standards and Compliance

Environmental Suitability:	Indoor/Outdoor - Euroclass Dca
Flammability / Reaction to Fire:	IEC 60332-1-2 and IEC 60332-3-24, CEI 20-22-3
CPR Compliance:	CPR Euroclass: Dca-s2,d1,a1
ISO/IEC Compliance:	IEC 61034-2 - Smoke Density Min Transmittance = 60%
CENELEC Compliance:	EN 50117-1
European Halogen Free Standards:	IEC 62821-1 Halogen Free Compliance = Yes, IEC 60754-1 - Halogen Amount = Zero, IEC 60754-2 - Halogen Acid Gas Amount - Max. Conductivity = 2.5 µS/mm, IEC 60754-2 - Halogen Acid Gas Amount - Min. pH = 4.3
European Directive Compliance:	EU CE Mark

History

Update and Revision:	Revision Number: 0.217 Revision Date: 04-08-2022

Part Numbers

Variants

	Item #	Color	Putup Type	Length	EAN
	7731DNH.01500	Green	Reel	500 m	8719605014047
	7731DNH.00500	Violet	Reel	500 m	8719605014030

© 2022 Belden, Inc

All Rights Reserved.

Although Belden makes every reasonable effort to ensure their accuracy at the time of this publication, information and specifications described here in are subject to error or omission and to change without notice, and the listing of such information and specifications does not ensure product availability.

Belden provides the information and specifications herein on an "ASIS" basis, with no representations or warranties, whether express, statutory or implied. In no event will Belden be liable for any damages (including consequential, indirect, incidental, special, punitive, or exemplary damages) whatsoever, even if Belden has been advised of the possibility of such damages, whether in an action under contract, negligence or any other theory, arising out of or in connection with the use, or inability to use, the information or specifications described herein.

All sales of Belden products are subject to Belden's standard terms and conditions of sale.

Belden believes this product to be in compliance with all applicable environmental programs as listed in the data sheet. The information provided is correct to the best of Belden's knowledge, information and belief at the date of its publication. This information is designed only as a general guide for the safe handling, storage, and any other operation of the product itself or the one that it becomes a part of. The Product

Disclosure is not to be considered a warranty or quality specification. I regulations based on their individual usage of the product.	Regulatory information is for guidance purposes onl	y. Product users are responsible for determining the applic	ability of legislation and